Advances in research on natural killer cell-associated tumor immune escape

Mei Wu, Zhi-Tong Wang *, Li-Mei Jiang, Yun-Dong Li

Abstract

Tumor immune escape plays an important role in carcinogenesis. Nature killer (NK) cells are human innate immune cells that do not need antigen sensitization prior to their activation. NK cells directly or indirectly kill tumor cells through cytotoxicity and immune regulation, but they are also involved in tumor immune escape. In this study, we reviewed the mechanism of NK cell-related tumor immune escape. The current knowledge on tumor cell alteration and the impact of inhibitory factors and the joint influence of other cells that lead to NK cell dysfunction and ultimately result in tumor immune escape have been researched and discussed. Understanding the potential mechanisms for restoration of the anti-tumor function of immune cells is of critical significance for discovering novel approaches for the treatment of tumors.

Keyword: tumor, immune escape, nature killer cell

Background

Tumor immune escape is a complicated multi-factor and multi-step process, which is among the ten characteristics of tumorigenesis. Immune escape is associated with an alteration of the tumor and the tumor microenvironment, as well as with suppression of the immune system. These are the necessary conditions for the tumor escape from the recognition and killing by the immune system, leading to proliferation, infiltration, recurrence, and metastasis [1-3]. Natural killer (NK) cells are specific immune cells involved in tumor immunity. They can not only directly kill tumor cells through cytotoxicity and immune regulation, but can also regulate the activities of other immune cells which indirectly kill tumor cells. Therefore, NK cells play an important role in tumor immune surveillance [4]. However, tumor cells escape the recognition and killing by NK cells through a variety of mechanisms. Thus, the restoration and enhancement of NK cell function is one of the most significant strategies for anti-tumor treatment. In this study, we reviewed the mechanism of immune escape of NK cells-related tumors.

1. Mechanism of tumor immune escape in carcinogenesis

In 2011, Hanahan and Weinberg [3] added four new features to the previously established six major tumor features: genome instability and mutation, pro-tumor inflammatory response, avoidance of immune attack, and abnormal cell energy metabolism, indicating

immune escape is one of the most important tumor characteristics.

1.1 Tumor immune escape originated from the escaped tumor cells themselves

Tumor cells can evade the host's immune attack by the alteration of their own antigens, for example, by downregulating or not expressing histocompatibility complex (MHC-I) molecules [5], MHC class I polypeptide-related sequence A (MICA), and MICB [6]. The low expression of adhesion molecules/co-stimulatory molecules related to T-cell activation prevents tumor cells from recognition by the immune system, whereas the high expression of negative-regulating costimulatory molecules, such as Fas ligand (FasL), programmed death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) [2] induces T-cell or NK cell apoptosis and inhibits the anti-tumor immune response. Tumor cells can also secrete immunosuppressive cytokines into the tumor microenvironment, such as the transforming growth factor-β (TGF-β), interleukin (IL)-10, and IL-4, which can inhibit anti-tumor immunity [2, 7, 8].

1.2 Tumor immune escape originates from the dysfunction of immune cells in the tumor microenvironment

Immune cells cannot kill tumors in the tumor microenvironment, which is affected by the activities of cytokines and tumor cells. Conversely, they promote tumor cell growth and metastasis. Cytokines in the tumor microenvironment induce the infiltration.

Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.

*Corresponding to: Zhi-Tong Wang. Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. E-mail: wongzt@163.com.

differentiation, and aggregation of chemotactic inhibitory immune cell subsets. For example, Treg cells are an inhibitory cell subset in which Foxp3 is a transcription factor, and whose phenotype is CD4⁺CD25⁺Foxp3⁺. TGF-β can induce CD4⁺CD25⁺Tcells to express Foxp3 and downregulate Smad7 to transform the subsets into Treg cells [9]. Furthermore, CCL22 and CCL5 enhance the infiltration and enrichment of Treg cells in local tumors [9-10]. Additionally, Treg cells can inhibit NK activation and induce NK apoptosis by secreting TGF- β and β galactoside-binding protein (β-GBP) [11-12]. It was also reported that CD18 adhesion was necessary for Treg cells to kill local immune cells in tumors, which ultimately lead to immune escape [13]. Regulatory B cells (Breg) also have a variety of phenotypes; for example, the tumor necrosis factor- α (TNF- α) secreted by Breg that can inhibit tumor immunity [14]. Tumorinfiltrating myeloid cells suppress the anti-tumor function of immunocompetent cells. Tumor-associated macrophage (TAM) accumulates in tumors and promotes their growth. Cytokines that are present in the tumor microenvironment, such as interferon-γ (IFN-γ) and TNF- α , can promote the polarization of TAM to M2 type macrophages and obtain immunosuppressive properties [15-16]. Myeloid-derived suppressor cells (MDSCs) are a subgroup of immature myeloid cells with suppressive properties. MDSC inhibits anti-tumor immunity by inducing T-cell apoptosis via suppressing T-cell receptor signal [17-18], producing IL-10, and TGF-β, inhibiting the function of NK cells and promoting the polarization of TAM [19] and infiltration of Treg cells to the tumor.

2. Correlation between NK cells and tumor immune escape

NK cells are a type of human innate immune cells, which are not restricted by MHC-I and antigen sensitization and are considered an important component for the tumor immunity function [20, 21]. The expression of activatory and inhibitory receptors on the surface of NK cells determines its activated state. Generally, activated NK cells can induce tumor cell apoptosis by releasing perforin and granzyme. They also augment the expression of death receptors (ligand of the tumor necrosis factor family) which mediate tumor cell apoptosis. Additionally, the secretion of effector factors (IFN- γ and TNF- α) is induced, and the CD16 is upregulated to activate antibody-dependent cytotoxicity that kills tumor cells [22]. However, in the tumor microenvironment, tumor cells can promote NK cell apoptosis by expressing abnormal molecules and secreting inhibitory factors that inhibit NK cell activation. Moreover, NK cell phenotype transformation can suppress the T-cell function, ultimately leading to tumor immune escape.

2.1 Abnormal molecules can be expressed on the tumor cells that inhibit NK activation and promote NK cell apoptosis

Importantly, tumor cells can express NK-activated receptor-related ligands, such as NKG2D ligand [23] and NKp30 ligand (BAG6) [24]. These ligands can protect tumor cells from metalloproteinase-mediated cleavage to form soluble ligands [25-27]. In addition, these ligands bind to receptors and promote sensitivity and internalization of NK cells, thereby reducing the NK cell activity. Tumor-related antigens can increase the expression of NK inhibitory receptors [28]. For example, Sun C et al. [29] found that infiltrated CD56^{dim}NK cells in hepatocellular carcinoma (HCC) patients had overexpression of the NK inhibitory receptor NKG2A, which induced NK cell depletion. In addition, tumor cells can escape the immune response by expressing FasL or downregulating Fas; they can also promote NK cells apoptosis by inducing NK cells to express Fas. Saito et al. [30] reported that the expression of Fas in NK cells around the tumor and the apoptosis rate in that area were significantly increased in gastric cancer patients.

2.2 Tumors can secrete inhibitory factors that inhibit NK cell activation

TGF-β [31], prostaglandin E2 (PGE2) [32], and indoleamine 2,3-dioxygenase (IDO)[33] are inhibitory cytokines of NK cells in the tumor microenvironment. Among them, TGF- β is one of the main inhibitors of NK cells, which is involved in immune escape. On the other hand, increased serum TGF-β levels have been detected in many tumor patients. Our previous study also showed that the content of TGF-\beta1 in the peripheral blood serum of the of HCC patients was significantly higher than that of normal people. Furthermore, TGF-β was reported to have an acute effect on the cytokine expression and cytotoxicity of NK cells [31]. It is noteworthy that TGF- β can inhibit the IFN- γ production in NK cells by activating the downstream Smad2 and Smad3 signaling pathways of TGF-βRI/II, downregulating the transcription factors T-bet and E4BP4 [34]. Additionally, by reducing granzyme B and perforin, TGF-β suppresses the cytotoxicity of NK cells. TGF-\beta also inhibits the expression of genes in noncoding regions by downregulating NKG2D [35] and immune escape. Tumor-derived thus mediates exosomes (TEXs) can inhibit the activation and killing of NK cells by actively releasing immunosuppressive molecules derived from tumor cells [36, 37]. Szczepanski et al. [38] found that TEXs downregulated the expression of the NK cell activation receptor NKG2D via its TGF-β content. Champsaur et al. reported that TEXs carried MHC-I molecular related proteins (MICA, MICB, and ULBPs) on the surface of tumor cells [39-40].

2.3 In the tumor microenvironment, NK cell phenotype transformation can inhibit the T-cell function

In tumor immunity, NK cells can effectively kill tumor cells which have escaped clearance by CD8⁺ T-cells (CTL). However, the phenotypic transition of NK cells was found to lead to a decrease in the number of T-cells and inhibition of the immune response in tumors [41]. In lung, colorectal, and breast (squamous cell carcinoma) cancers, NK cells with phenotypic transformation not only had impaired killing function, but were also characterized vascular endothelial growth factor (VEGF) overexpression, which promoted tumor development [41].

In addition, NK cell-related MDSC, TAMs, and tumor-associated fibroblasts (CAFs) are closely related, and their mechanisms of action are associated with the expression of secreted or binding inhibitory factors. Li *et al.* [42] established that the impairment of NK cells was related to MDSC proliferation in HCC, and the membrane-bound TGF-β1 on MDSC is was the key molecule that mediated the MDSC function. Of note, Balsamo *et al.* [43] found that CAFs can inhibit the expression of NK cells in melanoma activating the receptors NKp30 and NKp44 by releasing PGE2. In that respect, Li T *et al.* [44] found established that in HCC, CAFs caused NK cell dysfunction through the production of PGE2 and IDO.

3. Traditional Chinese Medicine (TCM) theory concerning NK cell-related tumor immune escape

TCM scholars have extensively studied and acquired a deep understanding of tumor treatment. Among them, the theories of the "holistic concept" and the "two-way regulation" have certain significance in explaining NK cell-related tumor immune escape. The surface receptors of NK cells have both "Yin" and "Yang" properties. For example, its inhibitory receptors (NKIR), such as NKG2A, transmit negative signals, and its activating receptors (NKAR), such as NKG2D, provide positive signals. Therefore, the balance of "Yin" and "Yang" is the key to determine the immunosuppressive or killing effect of NK cells.

Some scholars have found that herbs/prepared medicines also exerted a two-way antitumor regulation effect on NK cells. Guixiang et al. [45] reported that gi-tonifying and spleen-invigorating drugs can enhance the activity and killing ability of NK cells. In addition, Han et al. [46] evidenced that extracts from Astragalus complanatus R. Br. upregulated the expression of NKG2D and NKp44, and promoted the secretion of IFN-γ. In contrast, Luo et al. [47] revealed that Yupingfeng powder reduced the secretion of TGFβ and IL-10 and relieved NK-cell immunosuppression, leading to the prevention of immune escape and

improved killing effect on tumors.

In recent years, research on tumor immune escape has been intensified. Immunomodulation drugs have been used in clinics, such as PD-1/PD-L1 and CTLA-4 monoclonal antibodies, which have achieved promising results in melanoma and non-small-cell lung cancer. However, these monoclonal antibodies still have undesired side effects, a high drug resistance rate, and limited survival prolongation. TCM focuses on the holistic concept, which is based on the notion that by regulating tumor cells and their microenvironment and enhancement of immune cell function, the number and activity of NK cells could achieve optimal therapeutic effects [4]. We previously also found that Xiaoliusan, invented by Professor Wu Zhengxiang, a famous Chinese medicine doctor, significantly inhibited tumor growth and proliferation, and regulated tumor immunity. The mechanism of Xiaoliusan action is exerted via promotion of T-cell proliferation and NK cell activation, increase in the number of NK cells, overexpression of NKG2D, decrease in the serum exosomal content, and downregulation of TGF-β1 expression [48-49]. However, few TCM reports on the mechanism of NK cell-associated tumor escape have been published to Since NK cell-related tumor cell escape is critically involved in tumorigenesis, it may attract considerable research interest of TCM and Western medicine scholars in the future due to its potential for anti-cancer treatment.

References

- 1. Nawen Du, Rilan Bai, Jiuwei Cui. Tumor immune escape mechanism and treatment strategy. Chinese Journal of Cancer Biotherapy 2019; 26: 454-462.
- 2. Bijun Cui, Yizhi Yu. Immune escape mechanism in malignant tumors. Journal of Practical Oncology 2016; 31: 14-18.
- 3. HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674.
- 4. Yufang Sun, Zhongya Ni, Lixin Wang, et al. Tumor immune escape based on NK cells and the immune regulation effect of Chinese medicine on NK cells. China Medical Herald 2019; 16: 52-55. (Chinese)
- 5. BERGER M F,HODISE, HEFFERNAN T P,et al.Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485: 502-506.
- 6. Wang B, Wang Q, Wang Z, et al.Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res 2014; 74: 5746-5757.
- 7. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. NaT-cell Biol 2014; 16: 717-727.
- 8. Fantini MC, Becker C, Monteleone G, et al. Cutting

- edge: TGF-beta induces a regulatory phenotype in CD4+ CD25-T-cells through Foxp3 induction and downregulation of Smad. J Immunol 2004; 172: 5149-5153.
- Yang P, Li QJ, Feng Y, et al.TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22: 291-303.
- Tan MC, Goedegebuure PS, Belt BA, et al. Disruption of CCR5-dependent homing of regulatory T-cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol 2009; 182: 1746-1755.
- 11. Smyth MJ, Teng MW, Swann J, et al. CD4+CD25+Tregulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 2006; 176: 1582-1587.
- 12. Olkhanud PB, Baatar D, Bodogai M, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T-cells. Cancer Res 2009; 69: 5996-6004.
- 13. Grossman WJ, Verbsky JW, Barchet W, et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004; 21: 589-601.
- 14. Schioppa T, Moore R, Thompson RG, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA 2011; 108: 10662-10667.
- 15. Andreu P, Johansson M, Affara NI, et al. FcR gamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 2010; 17: 121-134.
- 16. Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479: 547-551.
- 17. Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T-cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689-695.
- 18. Srivastava MK, Sinha P, Clements VK, et al. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70: 68-77.
- 19. Shen P, Wang A, He M, et al. Increased circulating Lin(-/low)CD33(+) HLA-DR(-) myeloid-derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res 2014; 44: 639-650.
- 20. Nishida, S, Levi DM, Tzakis AG. Liver natural killer cell inoculum for liver transplantation with hepatocellular carcinoma. Curr Opin Organ Transplant 2013; 18: 690-694.
- 21. Shabani, Z., Bagheri, M., Zare-Bidaki, M., et al. NK cells in hepatitis B virus infection: a potent

- target for immunotherapy. Arch Virol 2014; 159: 1555-1565.
- 22. Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol 2017; 31: 37-54.
- 23. Liu G, Lu S, Wang X, et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest 2013; 123: 4410-4422.
- 24. Reiners KS, Topolar D, Henke A, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 2013; 121(18): 3658-3665.
- 25. Baragano Raneros A, Suarez-Alvarez B, Lopez-Larrea Secretory pathways generating immunosuppressive NKG2D ligands: New targets for therapeutic intervention. Oncoimmunology 2014; 3: e28497.
- 26. Zingoni A, Cecere F, Vulpis E, et al. Genotoxic Stress Induces Senescence -Associated ADAM10 -Dependent Release of NKG2D MIC Ligands in Multiple Myeloma Cells. J Immunol 2015; 195: 736-748.
- Fionda C, Soriani A, Zingoni A, et al. NKG2D and DNAM-1 Ligands: Molecular Targets for NK Cell -Mediated Immunotherapeutic Intervention in Multiple Myeloma. Biomed Res Int 2015; 2015: 178698.
- 28. Varbanova V, Naumova E, Mihaylova A. Killercell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol Immunother 2016; 65: 427-440.
- 29. Sun C, Xu J, Huang Q, et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 2016; 6: e1264562.
- 30. SAITO H, TAKAYA S, OSAKI T. Increased apoptosis and elevated Fas expression in circulating natural killer cells in gastric cancer patients. Gastric Cancer 2013; 16: 473-479.
- 31. Fujii R, Jochems C, Tritsch SR, et al. An IL-15 superagonist /IL -15Ralpha fusion complex protects and rescues NK cell -cytotoxic function from TGF -beta1 -mediated immunosuppression. Cancer Immunol Immunother 2018; 67: 675-689.
- 32. Park A, Lee Y, Kim MS, et al. Prostaglandin E2 Secreted by Thyroid Cancer Cells Contributes to Immune Escape Through the Suppression of Natural Killer (NK) Cell Cytotoxicity and NK Cell Differentiation. Front Immunol 2018; 9: 1859.
- 33. Della Chiesa M, Carlomagno S, Frumento G, et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK -cell function. Blood 2006; 108: 4118-4125.
- 34. Tang PM, Zhou S, Meng XM, et al. Smad3

- promotes cancer progression by inhibiting E4BP4 -mediated NK cell development. Nat Commun 2017; 8: 14677.
- 35. VITALE M, CANTONI C, PIETRA G, et al. Effect of tumor cells and tumor microenvironment on NK cell function. Eur J Immunol 2014; 44: 1582-1592.
- 36. Theresa L Whiteside. Tumor-derived exosomes and their role in cancer. Adv Clin Chem 2016; 74: 103-141.
- 37. Y Liu, Y Gu, X Cao. The exosomes in tumor immunity. Oncoimmunology 2015; 4: e1027472.
- 38. Miroslaw J, Szczepanski, Marta Szajnik, et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica 2011; 96: 1302-1309.
- 39. Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev 2010; 235: 267-285.
- Huang F, Wan J, Hu W, et al. Enhancement of Anti-Leukemia Immunity by Leukemia–Derived Exosomes Via Downregulation of TGF-β1 Expression. Cellular Physiology and Biochemistry 2017; 44, 240–254.
- 41. SUNGUR C M, MURPHY W J. Positive and negative regulation by NK cells in cancer. Crit Rev Oncog 2014; 19: 57-66.
- 42. Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-de rived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J Immunol 2009; 182: 240-249.
- 43. Balsamo M, Scordamaglia F, Pietra G, et al. Melanoma associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA 2009; 106: 20847-20852.
- 44. Li T, Yang Y, Hua X, et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett 2012; 318: 154-161.
- 45. Guixiang Gong, Jian Tang. The effect of Chinese medicine for invigorating qi, invigorating spleen and clearing heat on NK cell activity and quality of life in patients with malignant tumors. Modern Oncology Medicine 2015; 23: 3173-3175.
- 46. Han R, Wu WQ, Wu XP, et al. Effect of total flavonoids from the seeds of Astragali complanati on natural killer cell function. J Ethnopharmacol 2015; 173: 157-165.
- 47. Luo Y, Wu J, Zhu X, et al. NK Cell-Dependent Growth Inhibition of Lewis Lung Cancer by Yu-Ping -Feng, an Ancient Chinese Herbal Formula. Mediators Inflamm 2016; 2016: 3541283.
- 48. Mei Wu, Ying Gao, Bixin Tang, et al. Anti-S180 solid tumor and immunomodulatory effects of "Wushixiaoliu powder". Shanghai Journal of Traditional Chinese Medicine 2014; 48: 72-75.

- (Chinese)
- 49. Ying Gao, Mei Wu, Bixin Tang, et al. Anti-tumor effect of "Wushixiaoliu powder" on tumor-bearing mice. Chinese Patent Medicine 2014; 36: 12-16. (Chinese)

Competing interests: The authors declare that they have no conflict of interest.

Publisher's note: TMR Publishing Group Limited remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Citation: Wu M, Wang ZT, Jiang LM, et al. Advances in research on natural killer cell-associated tumor immune escape. Gastroenterology & Hepatology Research, 2020, 2 (3): 87–91.

© The Author(s), under exclusive licence to TMR Publishing Group Limited 2020